KIM COMPUTER


Computer Fundamentals: Hexadecimal System

Hexadecimal (Hex) is a base-16 number system. It uses sixteen distinct symbols: the numbers 0-9 and the letters A-F.

It is the standard way to represent binary data in computing, used in memory addresses, IP addresses, and styling colors.


1. Why use Hexadecimal?

Computers operate in Binary (Base-2), using only 0s and 1s. However, binary strings are too long and difficult for humans to read.

Key Concept: One Hexadecimal digit represents exactly 4 bits (a Nibble) of binary data. Two Hex digits make 1 Byte (8 bits).


2. Notation

In programming languages like C, C++, and Python, a prefix is used to indicate a Hex number.


3. Conversion Tables

① Decimal to Hexadecimal

Comparing our everyday counting system (Base-10) with Hex (Base-16).

Decimal (Base-10) Hexadecimal (Base-16) Note
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 A Start of letters
11 B
12 C
13 D
14 E
15 F Max value of 4 bits

② Hexadecimal to Binary - ⭐ Essential for Hardware

This mapping is crucial for bitwise operations in embedded systems.

Hex (Base-16) Binary (Base-2) Decimal Value
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

Example: Convert 0xB3 to Binary? B (11) -> 1011 3 (3) -> 0011 Result: 1011 0011

1 Byte (2 Hex Digits) to Decimal

A Byte consists of 2 Hexadecimal digits. It ranges from 00 to FF. Formula: (High Digit × 16) + Low Digit

Example: 0x2A = (2 × 16) + 10 = 42


1. Key Milestones Table

Commonly used values and limits.

Hexadecimal Decimal Note
00 0 Minimum Value
01 1
0A 10
0F 15
10 16
1F 31
20 32 Space char in ASCII
32 50
40 64 Power of 2 ($2^6$)
64 100 Decimal 100
7F 127 Max Signed Integer (7-bit)
80 128 Most Significant Bit (MSB) is 1
A0 160
C8 200 Decimal 200
FF 255 Maximum Value (All bits 1)

2. High Nibble Lookup Table (for Mental Math)

Use this to quickly calculate the value based on the first digit.

High Nibble (First Digit) Base Value ($N \times 16$)
0_ 0
1_ 16
2_ 32
3_ 48
4_ 64
5_ 80
6_ 96
7_ 112
8_ 128
9_ 144
A_ 160
B_ 176
C_ 192
D_ 208
E_ 224
F_ 240

How to use: To convert 0xC2: 1. Look up C_ in the table -> 192. 2. Add the second digit 2. 3. 192 + 2 = 194.